Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells.
نویسندگان
چکیده
The effect of race-specific elicitors on NADPH oxidase was examined in vivo by treating tomato cells with elicitor-containing intercellular fluids prepared from infected tomato leaves inoculated with specific Cladosporium fulvum races. Treatment of Cf-4 or Cf-5 cells with intercellular fluids from incompatible but not from compatible races of C. fulvum increased oxidase activity and the amount of p67-phox, p47-phox, and rac2 in the plasma membrane. Comparison of these three components in the cytosol and plasma membrane indicated that elicitors promoted the translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells carrying the appropriate resistance gene. Protein kinase C activators and inhibitors did not affect enzyme activity or the binding of these three components to the plasma membrane. In contrast, staurosporine, calmodulin antagonists, and EGTA inhibited elicitor-induced oxidase activity and the translocation of the cytosolic components. The assembly process involves a Ca(2+)-dependent protein kinase that catalyzes the phosphorylation of p67-phox and p47-phox, facilitating their translocation to the plasma membrane. Our data suggest that although both plants and animals share common elements in eukaryotic signal transduction, the involvement of different protein kinases mediating the activation of phosphorylation of p67-phox and p47-phox may reflect the unique spatial and temporal distribution of signal transduction pathways in plants.
منابع مشابه
Plant Defense Response to Fungal Pathogens (II. G-Protein-Mediated Changes in Host Plasma Membrane Redox Reactions).
Elicitor preparations containing the avr5 gene products from races 4 and 2.3 of Cladosporium fulvum, and tomato (Lycopersicon esculentum L.) cells containing the resistance gene Cf5 were used to investigate the involvement of redox processes in the production of active oxygen species associated with the plant response to the fungal elicitors. Here we demonstrate that certain race-specific elici...
متن کاملElectrolyte Leakage, Lipoxygenase, and Lipid Peroxidation Induced in Tomato Leaf Tissue by Specific and Nonspecific Elicitors from Cladosporium fulvum.
Glycoprotein nonspecific elicitor (NSE) and a specific elicitor preparation from intercellular fluids (SE) of tomato (Lycopersicon esculentum Mill. cv Bonny Best or Potentate) infected with race 2.4.5 of Cladosporium fulvum Cooke [syn. Fulvia fulva (Cooke) Ciferri] were injected into cv Sonatine (resistant to race 2.4.5) to compare electrolyte leakage, lipoxygenase activity, and lipid peroxidat...
متن کاملThe AVR9 race-specific elicitor of Cladosporium fulvum is processed by endogenous and plant proteases.
The avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum encodes a race-specific peptide elicitor that induces a hypersensitive response in tomato plants carrying the complementary resistance gene Cf9. The avr9 gene is highly expressed when C. fulvum is growing in the plant and the elicitor accumulates in infected leaves as a 28-amino acid (aa) peptide. In C. fulvum grown in v...
متن کاملRegulation of Plant Defense Response to Fungal Pathogens: Two Types of Protein Kinases in the Reversible Phosphorylation of the Host Plasma Membrane H+-ATPase.
The role of reversible phosphorylation of the host plasma membrane H+-ATPase in signal transduction during the incompatible interaction between tomato cells and the fungal pathogen Cladosporium fulvum was investigated. Tomato cells (with the Cf-5 resistance gene) or isolated plasma membranes from Cf-5 cells treated with elicitor preparations from race 2.3 or 4 of C. fulvum (containing the avr5 ...
متن کاملTwo cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation.
The superoxide-forming respiratory burst oxidase of human neutrophils is composed of membrane-associated catalytic components and cytosolic constituents required for oxidase activation. This study concerns the hypothesis that cytosolic oxidase components translocate to a membrane fraction when neutrophils are stimulated and the oxidase is activated. A polyclonal antiserum that recognizes two di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 9 2 شماره
صفحات -
تاریخ انتشار 1997